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Summary 

An empirical prediction algorithm is developed to assess the 
potential of useful multi-season forecasts of North Atlantic 
hurricane activity. The algorithm is based on combining 
separate univariate autoregressive moving average (ARMA) 
models for each of three dominant components of hurricane 
activity. A Bayesian criterion is used to select the order of 
each model. In a single retroactive hindcast experiment, the 
algorithm is found to make better hindcasts than an ARMA 
model of the detrended series. A real-time forecast of 
hurricane activity for the 1997 North Atlantic hurricane 
season proves to be more accurate than two competitive 
single-season forecast models, It is expected that the routine 
use of the forecast algorithm in an operational setting will 
result in only marginal skill against climatology; it could 
however offer considerable forecast value as realized by 
benefits to decision makers in the reinsurance industry. 

1. Introduction 

Seasonal forecasts of  tropical cyclone activity are 
now routinely issued for the North Atlantic basin 
(Elsner et al., 1996a; Gray, 1994) and the 
Australian region (Nicholls, 1994). Lead time 
for these forecasts range from less than one 
month to nearly one year ahead. For example, 
forecasts of  seasonal tropical cyclone activity 
during July through November for the Atlantic 
basin are issued in early December  of  the 
previous year (Gray et al., 1996; Elsner, et al., 
1996b). These forecasts are updated in. June 
(Gray et al., 1997), just prior to the beginning of 

the nearly five-month hurricane season and again 
in August (Gray et al,, 1993; Elsner et al., 1996a) 
at the start of  the peak months (August and 
September) of  the season. 

Currently, seasonal tropical cyclone prediction 
is based entirely on statistical methods. The 
forecasts provide some beneficial information by 
determining the likelihood of activity several 
months in advance with skill. However, their 
utility for the general public and for industry is 
l imited by several factors. For instance, a 
forecast of  below average tropical cyclone 
activity in the Atlantic basin may lure coastal 
residents into a false sense of security since it 
only takes a single major  storm to cause 
catastrophic losses. An example of this occurred 
in 1983 as hurricane Alicia was an intense U. S. 
hurricane during a year of below average activity. 
Seasonal forecasts for specific sub-basins of the 
North Atlantic attempt to overcome this limita- 
tion. Skillful forecast models are possible for the 
Gulf of  Mexico, the Caribbean Sea, and the U, S. 
southeast coast (Lehmiller et al., 1997). 

Another limitation, particularly for the insur- 
ance industry is the relatively short lead time of 
less than one year for the current suite of  forecast 
models. An early December  seasonal forecast 
offers only about 6 to 8 months of lead time. The 
primary aim of this paper is to demonstrate that 
his shortcoming can be overcome with the aid of 
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multi-season time-series forecast models of 
hurricane activity for the Atlantic basin. Lead 
times are defined as in Barnston et al. (1994) to 
be the time between the end of the latest 
observed period and the beginning of the 
predicted period. In this case, if forecasts are 
issued at the end of the hurricane season then 
lead times range from 6 months for a single- 
season forecast to 54 months for a five-season 
prediction. Within the overall strategy of in- 
creased level of precision in the measurement 
and management of risk, skillful multi-season 
(long-lead) forecasts would provide reinsurance 
companies information on liability risk for use in 
long term financial models. 

A recent paper by Elsner et al. (1998) 
demonstrates that important oscillations in the 
North Atlantic hurricane record are present at the 
biennial, semi-decadal, and near-decadal time 
scales. They employ the method of singular 
spectrum analysis (SSA) combined with the 
maximum entropy method (MEM) of fourier 
analysis. The biennial and semi-decadal oscilla- 
tions are confined to tropical-only hurricanes, 
whereas the near-decadal oscillation is restricted 
to baroclinically-enhanced hurricanes. As a 
consequence of the distinct power spectra 
exhibited by these two components of North 
Atlantic hurricane activity, it is not necessary to 
separate storm type for the present work. The 
present work extends the findings of Elsner et al. 
(1998) by using the same methodology to make 
multi-year predictions of hurricane activity. 

The present paper begins with a brief descrip- 
tion of the data followed the preliminary 
analyses, as detailed in Elsner et al. (1998). Subse- 
quently, a description of the forecast models 
including methods of choosing the proper model 
are provided. The paper ends with a multi-year 
forecast to the year 2001 in the discussion and 
summary section. 

2. Annual Record of North Atlantic Hurricanes 

The time series of interest is the annual hurricane 
count for the North Atlantic basin. The North 
Atlantic basin includes the Atlantic Ocean north 
of the equator, the Caribbean Sea, and the Gulf of 
Mexico. The hurricane season runs from June 
through November with a majority of hurricanes 
occurring during the months of August and 

September. In fact, 66% of Atlantic basin 
hurricane activity over the period 1900-1996 
occurred during these two months. The annual 
hurricane count is extracted from the National 
Hurricane Center's best-track data set. The data 
set is also known by the acronym HURDAT for 
HURricane DATa. Annual counts are available 
back to 1886 but are more reliable after the 
middle 1940's when the U.S. Air Force began 
aircraft reconnaissance missions to investigate 
individual storms. 

The present study considers the annual counts 
from 1886 through 1996 as a univariate time 
series. Original data sources and issues of data 
accuracy are discussed in Neumann et al. (1993). 
The effect of slightly fewer number of recorded 
hurricanes over the earliest years compared with 
the more recent years is partially ameliorated by 
removing the trend before analysis as explained 
in section four. Before any analysis is performed, 
the hurricane record is normalized by subtracting 
the mean from each year's number of hurricanes 
and dividing by the standard deviation (where the 
base period for the mean and standard deviation 
is the entire record from 1886 through 1996). 

3. Preliminary Analysis 

The analysis begins by considering the lagged- 
covariance matrix (S) of the univariate time 
series x(t) computed as 

l Nt-m+l 
SiJ--Nt_m+l ~ x(i+t-X)x(j+t-1). 

t=l  

(1) 
This method was original used by Broomhead 
and King (1986). The eigenvectors of S can be 
used to compute the principal components (ak, s) 
by projecting the original time record onto them 
as follows 

m 

1)e}, a i : E x ( i + j -  (2) 
j=l 

for i = 1, 2, . . .  N, where e~ represents the jth 
component of the kth eigenvector. With the 
normalization used above, the variance of each 
principal component is Ak and the amplitudes 
increase with increasing k. As a result of ortho- 
gonality, each principal component can be iso- 
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lated and probed independently from the remain- 
der of the time record. The principal components 
are used to reconstruct all or a selected portion of 
the time series. These reconstructed components, 
computed as 

/ 7 /  

x(i + j -  1) = E a~ie; ' (3) 
k=l 

are not pure waves but are limited in harmonic 
content. Since the time series is a sum of all in- 
dividual reconstructed components, the removal 
of one or more components is a form of filtering. 
The prediction algorithm described below in- 
volves building individual models separately for 
each of the important reconstructed components. 

However, before predictions are attempted 
trends or ultra-low frequency components in the 
time series are removed. The original time series 
consists of annual hurricane counts for the Atlantic 
basin for the period 1886-1996 (Fig. 1). For this 
time series, trends and extremely low frequency 
oscillations can arise from changes in observing 
techniques over the years and from natural 
fluctuations, perhaps induced by changes in sea 
surface temperatures. Following Vautard et al. 
(1992), the SSA can be used as part of an 
algorithm for removing trends which also 
includes the non-parametric test of Kendall and 
Stuart (1977). This method is used in Elsner et al. 
(1998) to detrend the annual hurricane record. 
The detrended record is shown in Fig. 2. For the 

14 

12 

10 

"E 

6 

= 4 

0 
188o 1900 1920 1940 1960 1980 2000 

Year (1886-1996) 

Fig. 1. Time series of the total number of North Atlantic 
basin hurricanes from 1886-1996 based on the best-track 
data set 
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Fig. 2. Detrended time series of the total number of North 
Atlantic basin hurricanes. The series is detrended by 
removing the leading ultra low-frequency temporal eigen- 
vector, after Elsner et al. (1998) 

remainder of the paper we concentrate only on 
the detrended record. 

The preliminary analysis continues by extract- 
ing the dominant oscillations in the detrended 
record. This is done is Elsner et al. (1998) 
according to Eq. (3). Figure 3 :shows the 
reconstructed components from the three domi- 
nant eigenvector pairs. Although these compo- 
nents indicate irregular oscillations (i.e., they are 
not pure waves), there is a distinct oscillation to 
each of them. The reconstructed component from 
the first eigenvector pair indicates a semi-decadal 
oscillation. The reconstructed component from 
the second eigenvector pair indicates a high 
frequency (biennial) oscillation while the recon- 
structed record from the third pair suggests a 
lower frequency sub-decadal oscillation. The 
reconstructed components, although having lim- 
ited harmonic content show amplitude modula- 
tion with different frequencies dominating the 
total variability (sum of the reconstructed 
components) during different epochs. For exam- 
ple, during the 1950's and 60's the biennial 
oscillation is relatively robust compared with the 
sub-decadal variability while during 1:he middle 
1980's until present, the biennial component is 
somewhat less important. 

The 2.5-year periodicity reflects the well-estab- 
lished association of hurricane activity with the 
stratospheric quasi-biennial oscillation (QBO), 
while the semi-decadal oscillation is likely tied 
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Fig. 3. The three dominant reconstructed components of the 
detrended North Atlantic hurricane record using the method 
of SSA. Each reconstructed record corresponds to a distinct 
oscillation with limited harmonic content (see Elsner et al., 
1998) 

to the E1 Nifio-Southern oscillation (ENSO) of 
the Pacific basin, which has an irregular fluctua- 
tion in the range of 4 to 6 years and has been 
implicated in modulating major hurricane activ- 
ity in the North Atlantic basin. Observational and 
modeling studies independently confirmed this 
linkage, which is probably related through 
increased vertical shear of the horizontal winds 
over prime hurricane genesis regions of the North 
Atlantic (Goldenberg and Shapiro, 1996). More 
speculative, the sub-decadal oscillation might be 
induced by long-period changes in sea surface 
temperatures in parts of the North Atlantic Ocean 
(Landsea et al., 1994). For example, Kimberlain 
and Elsner (1998) show that sea surface tem- 
peratures in a region to the east of the Lesser 
Antilles appears to modulate hurricane activity 
with tropical-only hurricanes (Elsner et al., 
1996c) occurring during warm years. The warm 
and cold years appear to alternate on the time 
scale of 7 to 10 years. 

4. Forecast Models 

Due to the restricted harmonic content, the 
reconstructed components are readily amenable 
to low-order autoregressive modeling. Let {x(t)} 
be the detrended hurricane series for the North 
Atlantic basin, and denote the three dominant 
reconstructed components of the detrended 
hurricance series by {yl(t)}, {y2(t)} and {y3(t)}. 
In this section, univariate autoregressive moving 
average (ARMA) models will be built for the 
four series for the purpose of forecasting. In 
general, a time series {y(t)} may be modeled as 
an ARMA (p, q) model with the form: 

y ( t )  - ~) ly ( t  - 1) . . . . .  ~ p y ( t  - p )  

= # +  e ( t ) - 0 1 e ( t -  1) . . . . .  O q e ( t - q ) ,  

(4) 
where e(t)'s are assumed to be independent and 
normally distributed with mean zero and var- 
iance o -2. In the model, p is the order of the 
autoregression (AR) term, and q is the order of 
the moving-average (MA) term. The AR and MA 
coefficients in the model will be denoted by q~ 
= (~ba,...,~be)' and 0 = (01, . . . ,  Oq) t, respectively. 
If some coefficients in model (4) are zeros, i.e., 
q) i  = 0 for i < p or Oj = 0 for j < q, then model 
(4) is called a persimonious ARMA (p, q) model. 



Multi-Year Prediction Model of North Atlantic Hurricane Activity 47 

The first step of modeling a time series is to 
identify a tentatitve model for the data set. 
Numerous criteria have been proposed for model 
selection in time series literature (see, e.g., Box 
and Jenkins, 1976; Brockwell and Davis, 1991). 
For example, Schwartz (1978) suggested a 
Bayesian criterion (SBC), which is similar to 
Akaike's Bayesian criterion (BIC). Specifically, 
assume that an ARMA (p, q) model of M 
parameters is fitted to a data set. Then the SBC 
for the fitted model is defined as 

S B C ( M )  = -2log(L(6,  0, 3 -2) + Mlog(n),  (5) 

where L(6, tJ, 3 -2) is the maximum of the like- 
lihood function for the parameters, and n is the 
sample size. Among a group of adequate 
models to fit the data set, the one with the 
smallest SBC value will be selected as the best 
choice. 

Since the time-series models require contin- 
uous records, the skill assessment of cross- 
validation (Michaelson, 1987; Elsner and 
Schmertmann, 1993) can not be directly imple- 
mented here. To estimate forecast skill the 
retroactive method is used. The retroactive 
method requires the model be built from data 
over a portion of the record and hindcasts be 
made on the remaining withheld portion. The cut 
point between building and hindcasting repre- 
sents a compromise betwen model integrity and 
skill assessment. If the cut is made so that half is 
used for training and half for hindcasts then the 
model is very sensitive to the earliest part of the 
record, but good statistics can be made for 
accurate skill assessment. On the other hand, if 
the cut is made to maximize the number of years 
used to build the model, then skill assessment is 
limited. Since the record is only 96 values long, it 
is imperative to use most of the record for 
building the model at the expense of only a token 
assessment of skill. However, the uncertainty of 
the hindcasts are treated. 

A univariate ARMA (p, q) model is built for 
each of the four series by using the first 91 
observations in the series (1901-1991). The 
Schwartz Bayesian criterion is used for model 
selection and the maximum likelihood method is 
used to estimate the parameters in the chosen 
model. The final chosen model for {ya(t)}, the 
first dominant reconstructed component of the 
detrended hurricane series, is a parsimonious AR 

Table 1. Estimated Coefficients and the Estimated Standard 
Errors for the Model of the First Reconstructed Component 

Coefficient Estimates Std Error t-Ratio 

41 0.372 0.082 4.54 
4~2 -0.508 0.081 -6.27 
43 -0.446 0.102 -4.37 
46 -0.325 0.109 -2.98 
09 -0.246 O. 104 -2.37 
41o 0.371 0.092 4.03 
41a -0.282 0.093 -3.03 
413 -0.252 0.098 -2.58 
415 -0.300 0.082 -3.66 

R 2 0.81 

(15) model with the form: 

yl ( t )  = ~ l Y l ( t - -  1) § f52Yl(t--  2) 

+ ~ 3 y l ( t -  3) + ~ 6 Y l ( t - 6 )  

+ ~b9 yl(t  -- 9) + ~bl0 YI (t -- 10) 

§ ~ l l Y l ( t - -  11) + O 1 3 y l ( t -  13) 

§ @15 Yl( t -- 15) § C(t). (6) 

The estimated parameters along with the esti- 
mated standard errors are listed in Table 1. In the 
table, the R 2 for the fitted model is calculated by 
the formula: 

R 2 = 1 - Z t n - l ( Y l ( t )  - yl(t))2 

~ t L 1  (Yl (t) -- yl)2 ' 

where {~1(t),t = 1 , . . .  ,n} are the fitted values 
based on the model. The value of R2=0.81 
means that the parsimonious AR(I5) model 
explains about 81% of the total variation of the 
series {yl(t) }. 

The final identified model for the second 
dominant reconstructed component {y2(t)} is 
the following parsimonious ARMA (15, 2) model: 

y2(t) = Oly2(t - 1) + ~b2Y2(t- 2) + 4'4yl(t  - 4) 

+ ~lOYl(t- 10) + ~13Yl(t- 13) 

+ ~15Yl(t -- 15) + c ( t ) -  02c(t - 2). 

(7) 
The estimated parameters and the estimated 
standard errors are listed in Table 2, in which 
the value of R 2 = 0.72 indicates that about 72% 
of the total variation of the second dominant 
component of the detrended hurricane series is 
explained by the fitted model. 
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Table 2. Estimated Coefficients and the Estimated Standard 
Errors for the Model of the Second Reconstructe d Compo- 
nent 

Coefficient Estimates Std Error t-Ratio 

41 -0.639 0.077 -8.30 
~2 -0.312 0.085 -3.67 
~4 -0.421 0,068 -6.19 
4m 0.355 0.087 4.08 
~3 -0.227 0.065 -3.49 
~t5 -0.253 0.075 3.37 
02 0.487 0.110 4.43 

R 2 0.72 

Table 3. Estimated Coefficients and the Estimated Standard 
Errors for the Model of the Third Reconstructed Component 

Coefficient Estimates Std Error t-Ratio 

~t 1.023 0.104 9.85 
42 -1.099 0.148 -7.43 
43 0.425 0.173 2.46 
44 -0.836 0.165 -5.07 
4~ 0.578 0.163 3.55 
46 -0.834 0.167 -4.99 
47 0.367 0.152 2.41 
48 -0.273 0.112 -2.44 

R 2 0.83 

The third dominant reconstructed component 
{y3(t)} has much smaller variation than the first 
two components (Fig. 3). The final fitted model 
for this series is an AR(8) model, i.e., 

8 

y3(t) = ~ ~ i Y 3 ( t -  i) q- c(t). (8) 
i=1 

The estimated coefficients in this model are given 
in Table 3, and about 83% of the total variation 
of this series is explained by the fitted AR(8) 
model. 

Similarly, a time series model is fitted to {x(t)} 
by using 91 observations of the detrended hur- 
ricane series over the period from 1901 to 1991. 
The final identified model for this series is the 
following parsimonious AR(17) model: 

x(t) = +lox( t -  10) + q517x(t- 17) + e(t). (9) 

The estimated coefficients are ~10 = 0.238 and 
~!7 = 0.276 with estimated standard errors of se 
@510) = 0.101 and se(~7)  = 0.104, respectively. 
The R 2 for this fitted model is 0.10, which means 
that only 10% of the total variation of the 
detrended hurricane series is explained by the 
fitted model. This model, although very limited 
in terms of predictability, is dearly better than 
white noise as indicated by the SBC. 

Table 4. The Five-Year Normalized Detrended Values, Hindcast Values, Lower and Upper Bounds of the 95% Confidence 
Intervals for the Hindcast Values of the Three Dominant Reconstructed Components 

Year Normalized Hindcast Lower bound Upper bound 

The first dominant component 
1992 -1.156 -0.835 -1.362 -0.308 
1993 -0.480 -0.457 -1.020 0.105 
1994 0.353 0.138 -0.457 0.733 
1995 1.739 1.102 0.381 1.823 
I996 0.565 0.384 -0.350 1.119 

The second dominant component 
1992 0.243 0.232 -0.183 0.646 
1993 -0.053 -0.208 -0.700 0.284 
1994 -0.501 -0.101 -0.619 0.416 
1995 0.323 0.110 -0.440 0.660 
1996 -0.178 -0.254 -0.855 0.348 

The third dominantcomponent 
1992 -0.236 -0.288 -0.404 -0.172 
1993 -0.212 -0.297 -0.464 -0.130 
1994 -0.136 -0.166 -0.333 0.001 
1995 -0.028 -0.034 -0.223 0.154 
1996 0.051 0.112 -0. t17 0.34l 
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Fig. 4. Hindcasts of annual North Atlantic hurricane 
abundance in the five-year period 1992-1996 expressed in 
terms of actual number of storms. The detrended values 
along with the lower and upper bounds of the 95% 
confidence intervals for the hindcast values are also shown 

Based on the R 2 values of the fitted univariate 
time series models for the four series, it is clear 
that each of the three dominant reconstructed 
components can be well fitted by an ARMA 
(p, q) model but not the detrended hurricane 
series itself. The fitted models for the three 
components are used to forecast (hindcast) 
values over the next 5 years (1992-1996). The 
five-year real and forecast values of the three 
dominant components are listed in Table 4 along 
with lower and upper bounds of the 95% 
confidence intervals. 

It is notable from Table 4 that all of the real 
values are within their 95% confidence intervals. 
Except for a few extreme cases such as the 1995 
value of the first component and the 1994 value 
of the second component, the forecast values are 
quite close to their corresponding actual values 
(based on the detrended series). The third 
dominant component appears to be more acu- 
rately predicted by its fitted model than other two 
components, which is partially due to smaller 
variability of this series. Figure 4 shows the 
hindcasts in terms of the actual numbers of 
hurricanes. The model appears to do well in 
predicting the upswing in hurricane activity 
between 1994 and 1995, though the uncertainty 
is large and grows with lead time. 

5. Discussion and Summary 

In this study the annual abundance of North 
Atlantic hurricanes is examined from the per- 
spective of time series prediction. The time series 
analysis is done using the procedure of SSA and 
MEM as described in Elsner et al. (1998). The 
annual number of North Atlantic hurricanes is 
first detrended to remove the ultra-low frequency 
components and trends of the historical data set. 
Such components can arise due to the known 
improvements in our ability to accurately log all 
hurricane occurrences over the period and from 
natural variability, perhaps forced by long-period 
changes in SSTs. 

After detrending, the dominant reconstructed 
components from an SSA reveal important 
modes of Atlantic basin hurricance variability 
at the biennial, semi-decadal and sub-decadal 
time scales. The high frequency component is 
consistent with the stratospheric QBO (28-31 
months) and its known impact on hurricane 
activity (Gray, 1984). The semi-decadal, oscilla- 
tion, which accounts for the greatest percentage 
of time-series variance, is likely related to the 
ENSO of the tropical Pacific basin. Recent 
studies (Gray, 1984; Gray et al., 1993; Golden- 
berg and Shapiro, 1996) have shown a telecon- 
nection between ENSO and Atlantic hurricane 
abundance, with a warm ENSO phase associated 
with fewer storms and a cold ENSO phase 
with more storms. It is suggested by numerous 
authors that the linkage is likely related to 
changes in upper-tropospheric flow. The sub- 
decadal oscillation might be tied to low 
frequency changes in Atlantic SST changes, 
which could be linked to solar activity (Elsner 
and Kara, 1999). 

An empirical prediction algorithm is designed 
to examine the potential for useful multi-season 
forecasts of Atlantic basin hurricane activity. The 
algorithm requires separate ARMA models for 
each of the three dominant reconstructed com- 
ponents in the detrended record. A modified 
Bayesian criteria is used to select the proper 
order of the autoregressive and moving-average 
component for each model. The in-sample R 2 
values indicate that the models are capable of 
explaining between 72 and 83% of the totat 
variation in the reconstructed components. The 
models are developed on data over the period 
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1901-1991, inclusive. A hindcast prediction for 
the years 1992-1996 shows that the algorithm is 
better at forecasting the individual components 
separately compared with using an ARMA 
model to forecast the detrended record itself (in 
this case the R 2 value is 0.10). The method 
appears to do well in hindcasting above normal 
activity for the vigorous 1995-1996 period (20 
Atlantic basin hurricanes). Standard error calcu- 
lations indicate a large uncertainty in predicted 
numbers that grows with lead time, as expected. 

Formal statistical significance in the validation 
of time-series models with limited data is 
difficult to calculate. We have provided a fair 
test against an ARMA model on the detrended 
record for a limited five-year (1992-1996) case 
study. Yet it should be kept in mind that over the 
span of these five years the hurricane abundance 
went from well-below (1992-1994) to well- 
above (1995-1996) the long-term average so this 
limited case study spans a wide spectrum of 
Atlantic basin hurricane variability. Although the 
comparison between the two approaches is fair, a 
few caveats are important. First, since the sum of 
the three reconstructed components explains 
about 60% of the detrended series, even an 
algorithm capable of forecasting 80% of the 
reconstructed record is, in effect, only explaining 
about 50% of the actual detrended record. 
Furthermore, since the reconstruction is based 
on the entire period (1886-1996) the hindcast 
skill is not from totally independent information. 
Note, however, this is also true to some extent of 
the hindcast evaluation of the ARMA model of 
the detrended record since the detrending was 
done using all the data. Nevertheless, based on 
the clear advantage of modeling the components 
separately and on results using similar modeling 
strategies (Jiang et al., 1996; Keppenne and Lall, 
1996), confidence is high that this approach is 
sound. 

To further demonstrate the likely skill of this 
approach, a real-time forecast is made in 
operational mode. Using the methodology 
described above a five-season forecast for the 
years 1997 through 2001 is made. Model 
parameters are estimated based on data over the 
period 1886-1996. Note this forecast involves no 
look-ahead information as the model is initia- 
lized with data only through the 1996 North 
Atlantic hurricane season. Table 5 shows the 

Table 5. A Five-Year Forecast Initialized in June of  1997 
Using ARMA Models on the Reconstructed Components 

from a SSA. Also Included are the Single-season Forecasts 
Issued in December of1996 and December 1997 by FSU and 
CSU 

Year Forecast E r r o r  CSU FSU Actual 

1997 4.4 4-3.1 7 6 3 
1998 2.8 -t-3.3 5 3 - 
1999 3.4 -t-3.3 - - - 
2000 6.7 • - - - 
2001 6.4 4-3.5 - - - 

forecast and associated error bounds. Also 
included are single-season forecasts from the 
Colorado State University group and our group at 
Florida State University issued in December of 
1996 and December of 1997. Both the single- 
season forecast models are multiple regression 
models involving various predictors. The multi- 
year model predicted 4 hurricanes for the 1997 
season. This compares with early December 
1996 forecasts of 7 and 6 hurricanes based on 
the two regression models. The actual number of 
hurricanes over the North Atlantic for 1997 was 
3. Although the multi-year model out-performed 
the two single-season models, caution is advised 
as this is a single comparison and will not likely 
generalize over all years. This caveat is impor- 
tant in light of the failed forecast of a La Nifia 
event given by Keppenne and Ghil (1992) using a 
similar method. The model indicates below average 
hurricane activity for 1998, but above average 
activity in the year 2000. The below average 
activity forecast for 1998 is consistent with the 
early December 1997 single-season forecast model 
projections. Note should be made of the fact that 
the trend is not replaced in the forecast values. 
We will continue this kind of real-time verifica- 
tion of the multi-year hurricane forecast model. 

Although it is likely that the skill level of the 
multi-year model when used in an operational 
mode over the long run will only be marginal 
against climatology, the extended lead time 
offers additional benefits to risk management. 
Multi-year predictions are valuable to calculating 
insured risk by allowing for modification of the 
probabilities incorporated within existing risk 
models (RPI, 1997). On the other hand, due to 
the instability of variance in the reconstructed 
components, the potential for significant forecast 
success with this type of modeling is limited. 
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This  s tudy will be ex tended  to invest igate the 

potent ia l  of  using the m e t h o d o l o g y  to make  

useful mul t i -year  project ions of  intense hurr icane 
act ivi ty and U.S. landfal l ing hurr icane  activity. 
Addit ional ly,  research  into the connec t ion  be- 
tween  Nor th  Atlant ic  SSTs and hurr icanes  could  
lead to the deve lopmen t  o f  space- t ime mul t i -year  
forecas t  models .  Research  along these lines is 

also cont inuing.  
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